By what factor does the volume of a right circular cylinder increase when the radius is doubled?

1) Because we're not told the radius, assume it's just r.
2) The volume when the radius is r is $V=\pi r^{2} h$.
3) When we double the radius, we replace r with 2 r .

So the new volume is $\mathrm{V}_{\text {new }}=\pi(2 \mathrm{r})^{2} \cdot \mathrm{~h}$
To simplify the expression on the right side, we proceed as shown:
$\mathrm{V}_{\text {new }}=\pi 2^{2} \cdot \mathrm{r}^{2} \cdot \mathrm{~h} \quad$ Distribute the exponent of 2 individually to the 2 and the r
$\mathrm{V}_{\text {new }}=\pi \cdot 4 \cdot \mathrm{r}^{2} \cdot \mathrm{~h} \quad 2^{2}=4$
$V_{\text {new }}=4 \cdot \pi r^{2} h$
$V_{\text {new }}=4 \cdot V \quad \pi r^{2} \cdot h$ is the old volume, however, so the new one is 4 times the old.

