Solving equations with variables on both sides:

Example:
Step 1: Move $2 x$ to the left side:
Step 2: Simplify:
Step 3: Move the 4 to the right:

$$
\begin{aligned}
& 5 x-4=2 x+3 \\
& 5 x-2 x-4=3 \\
& 3 x-4=3 \\
& 3 x=3+4 \\
& 3 x=7 \\
& \frac{3 x}{3}=\frac{7}{3}
\end{aligned}
$$

Step 4: Simplify:
Step 5: Divide by 3:
Step 6: On the left, $\frac{3}{3}=1$ :
$x=\frac{7}{3}$

Example of an equation with the distributive property: $2(x+3)=5$

1) Distribute the 2 into the parenthesis: $2 \cdot x+2 \cdot 3=5$
2) Now do the multiplications:
$2 x+6=5$
3) Subtract 6 from both sides:
$2 x=5-6$
4) Simplify:
$2 x=-1$
5) Divide by 2:
$\frac{2 x}{2}=\frac{-1}{2}$
6) $\frac{2}{2}=1$ :
$x=\frac{-1}{2}$

Example of an equation with fractions in the equation: $\frac{1}{2} x+\frac{3}{2}=\frac{5}{2}$

Step 1) Clear away the denominators by multiplying by the LCD
This means multiply both sides by 2.
2. $\left(\frac{1}{2} \mathrm{x}+\frac{3}{2}=\frac{5}{2}\right)$

Step 2) Carry out the multiplication: $\quad 2 \cdot \frac{1}{2} \cdot x+2 \cdot \frac{3}{2}=2 \cdot \frac{5}{2}$
Step 3) Cancel the 2's: $1 x+3=5$

Step 4) At this point, we have something we've seen before. Subtract 3: $1 x=5-3$
Step 5) Simplify: $1 x=2$
Step 6) Rewrite $1 x$ as just $x: \quad x=2$

Example of an equation with fractions in the equation: $\frac{1}{4} x+\frac{3}{2}=\frac{5}{2}$

1) Find the LCD: The multiples of $4: 4=4 \cdot 1,4 \cdot 2,4 \cdot 3=4,8,12$

$$
2=2 \cdot 1,2 \cdot 2,2 \cdot 3=2,4,6
$$

2) Because 4 is the lowest number shared between the two lists above, it's the LCD.
3) We multiply both sides of the equation by $4: 4 \cdot\left(\frac{1}{4} x+\frac{3}{2}=\frac{5}{2}\right)$
4) Distribute the 4 into the parenthesis: $\quad 4 \cdot \frac{1}{4} \cdot x+4 \cdot \frac{3}{2}=4 \cdot \frac{5}{2}$
5) Simplify by regrouping:

$$
\left(\frac{4}{4}\right) \cdot x+\left(\frac{4}{2}\right) \cdot 3=\left(\frac{4}{2}\right) \cdot 5
$$

6) Simplify by dividing:

$$
1 x+2 \cdot 3=2 \cdot 5
$$

7) Simplify by multipliying:

$$
\begin{aligned}
& 1 x+6=10 \\
& 1 x=4 \\
& x=4
\end{aligned}
$$

8) Subtract 6 from both sides:

Example of an equation with decimals in the equation: $0.2 x+0.3=0.9$
Because we have $0.2,0.3$, and 0.9 , multiply both sides by 10 to get rid of the decimal. 0.2 is also $\frac{2}{10}, \quad 0.3$ is also $\frac{3}{10} \quad, \quad 0.9$ is also $\frac{9}{10}$

1) Multiply both sides by 10 because we have only the 10th's decimal place: $10(0.2 x+0.3)=10(0.9)$
2) Distribute the 10:

$$
\begin{array}{ll}
10 \cdot 0.2 \cdot x+10 \cdot 0.3=10 \cdot 0.9 & 10(0.2)=2,10(0.3)=3 \\
& 10(0.9)=9 \\
2 x+3=9 &
\end{array}
$$

3) Carry out the multiplications:
4) Subtract 3 from both sides:
$2 x=9-3$
5) Simplify:
$2 x=6$
6) Divide both sides by 2 :
$\frac{2 x}{2}=\frac{6}{2}$
7) Simplify:

$$
x=3
$$

