www.tomsmath.com

1)
$$r = -3\cos(\theta)$$

Setup the problem

2)
$$\mathbf{r} \cdot \mathbf{r} = -3\mathbf{r} \cdot \cos(\theta)$$

 $r^2 = -3r\cos(\theta)$

Multiply both sides by r

3)
$$x^2 + y^2 = -3x$$

Replace
$$r^2$$
 with $x^2 + y^2$ and $rcos(\theta)$ with x

4)
$$x^2 + y^2 + 3x = 0$$

Move -3x to the left by adding it

5)
$$x^2 + 3x + y^2 = 0$$

Rearrange so the x terms are together

6)
$$\left(x + \frac{3}{2}\right)^2 - \frac{9}{4} + y^2 = 0$$

Complete the square on the terms with \boldsymbol{x}

7)
$$\left(x + \frac{3}{2}\right)^2 + y^2 = \frac{9}{4}$$

Move the $\frac{-9}{4}$ from step 6) to the right side

8)
$$\left[x - \left(\frac{-3}{2} \right) \right]^2 + y^2 = \left(\frac{3}{2} \right)^2$$

Rewrite as shown so you can easily identify the horizontal shift, and the radius fo the circle. Remember that something like x+3 is the same as (x-(-3)).

Now we can conclude we have a circle with center $\left(\frac{-3}{2},0\right)$ and radius $r=\frac{3}{2}$

