1) $r=-3 \cos (\theta)$

Setup the problem
2) $r \cdot r=-3 r \cdot \cos (\theta)$

$$
r^{2}=-3 r \cos (\theta)
$$

Multiply both sides by r
3) $x^{2}+y^{2}=-3 x$
4) $x^{2}+y^{2}+3 x=0$

Replace r^{2} with $\mathrm{x}^{2}+\mathrm{y}^{2}$ and $\operatorname{rcos}(\theta)$ with x
Move $-3 x$ to the left by adding it
5) $x^{2}+3 x+y^{2}=0$
6) $\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+y^{2}=0$
7) $\left(x+\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}$

Rearrange so the x terms are together

Complete the square on the terms with x
8) $\left[x-\left(\frac{-3}{2}\right)\right]^{2}+y^{2}=\left(\frac{3}{2}\right)^{2}$

Move the $\frac{-9}{4}$ from step 6) to the right side
Rewrite as shown so you can easily identify the horizontal shift, and the radius fo the circle. Remember that something like $x+3$ is the same as $(x-(-3))$.

Now we can conclude we have a circle with center $\left(\frac{-3}{2}, 0\right)$ and radius $r=\frac{3}{2}$

