www.tomsmath.com

A function is given by $f(x)=3 x+12$.
a) Find the inverse, and call it g(x).

1) Rewrite as: $y=3 x+12$
2) Interchange the y and $x: x=3 y+12$
3) Solve the new function for y, as shown below.

$$
\begin{aligned}
& x=3 y+12 \\
& x-12=3 y \quad \text { Subtract } 12 \text { from both sides } \\
& \frac{x-12}{3}=y \quad \text { Divide both sides by } 3 \\
& \frac{x-12}{3}=g(x) \quad \text { Rewrite } y \text { as } g(x)
\end{aligned}
$$

b) To confirm these are truly inverses, compose $g(x)$ and $f(x)$.

$$
\begin{aligned}
\mathrm{f}\left(\frac{\mathrm{x}-12}{3}\right) & =3\left(\frac{\mathrm{x}-12}{3}\right)+12 & & \text { Plug } \mathrm{g}(\mathrm{x}) \text { into } \mathrm{f}(\mathrm{x}) \\
& =\frac{3}{3}(\mathrm{x}-12)+12 & & \text { Pull the } 3 \text { from the bottom and put under the three in front } \\
& =(\mathrm{x}-12)+12 & & \frac{3}{3}=1, \text { so they go a way } \\
& =\mathrm{x}-12+12 & & \text { Add }-12 \text { and } 12 \text { to get } 0, \text { so only } \mathrm{x} \text { remains } \\
& =\mathrm{x} & & \text { This means } \mathrm{g}(\mathrm{x}) \text { and } \mathrm{f}(\mathrm{x}) \text { are inverses. }
\end{aligned}
$$

c) $f(g(-2))=-2 \quad$ This is so because f and g are inverses. This means that we get back to -2 .

