1) First transform the equation into standard form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

2) Find the integrating factor

$$
I(x)=e^{\int P(x) d x}
$$

3) Multiply the equation by the integrating factor
$I(x) \frac{d y}{d x}+I(x) \cdot P(x) y=I(x) \cdot Q(x)$
4) Rewrite the left side as it would look before the application of the product rule.

$$
(\mathrm{I}(\mathrm{x}) \cdot \mathrm{y})^{\prime}=\mathrm{I}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})
$$

5) Integrate both sides to get rid of the prime on the left

$$
\begin{aligned}
& \int(\mathrm{I}(\mathrm{x}) \cdot \mathrm{y})^{\prime} \mathrm{dx}=\int \mathrm{I}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x}) \mathrm{dx}+\mathrm{C} \\
& \mathrm{I}(\mathrm{x}) \cdot \mathrm{y}=\int \mathrm{I}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x}) \mathrm{dx}+\mathrm{C}
\end{aligned}
$$

$6)$ Isolate y by dividing both sides by the integrating factor.

$$
\mathrm{y}=\frac{1}{\mathrm{I}(\mathrm{x})}\left(\int \mathrm{I}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x}) \mathrm{dx}+\mathrm{C}\right)
$$

