www.tomsmath.com

Find a polynomial that represents the perimeter of the triangle.

1) The perimeter is found by adding the sides.

$$
\begin{array}{rlrl}
\mathrm{P} & =\left(x^{3}+3\right)+\left(x^{3}-3 x^{2}-1\right)+\left(x^{3}+2 x^{2}\right) & & \text { set up the sum } \\
& =x^{3}+3+x^{3}-3 x^{2}-1+x^{3}+2 x^{2} & & \text { drop the parenthesis } \\
& =x^{3}+x^{3}+x^{3}-3 x^{2}+2 x^{2}+3-1 & & \text { regroup } \\
& =3 x^{3}-1 x^{2}+2 & \text { add }
\end{array}
$$

Review of adding polynomials:
Add $\left(x^{2}+4\right)+\left(x^{2}-x\right)$

1) Rewrite to show the coefficients clearly:

$$
\begin{aligned}
& \left(1 x^{2}+4\right)+\left(1 x^{2}-1 x\right) \\
& 1 x^{2}+4+1 x^{2}-1 x \\
& 1 x^{2}+1 x^{2}-1 x+4 \\
& 2 x^{2}-1 x+4
\end{aligned}
$$

2) Drop the parenthesis:
3) Regroup like terms together:
4) Now add the coefficients and copy the variable parts:
