Convert the equation $y d x-x d y=0$ into exact form.

1) Identify M. This is usually the function in front of the $d x: M=y$
2) Differentiate M with respect to $y: M_{y}=\frac{\partial}{\partial y}(y)=1$
3) Identify N. This is usually the function in front of dy: $N=-x$
4) Differentiate N with respect to $x: N_{x}=\frac{\partial}{\partial x}(-x)=-1$
5) Compare the results of steps 2) and 4) above.
$M_{y} \neq N_{x}$
This means the equation is not exact.
6) Form the integrating factor as shown below.
$\frac{1}{M}\left(N_{x}-M_{y}\right)=\frac{1}{y}(-1-1)=\frac{1}{y} \cdot(-2)=\frac{-2}{y} \quad$ This is a function of y only. It's $\frac{-2}{y}$

So the integrating factor is $e^{\int \frac{-2}{y} d x}=e^{-2 \ln (y)}=e^{\ln \left(y^{-2}\right)}=y^{-2}$

Remember thate and ln are inverses, so they cancel, leaving only $y^{-2}=\frac{1}{y^{2}}$
7) Multiply the original equation by the integrating factor.
$\frac{1}{y^{2}}(y d x-x d y)=\frac{1}{y^{2}}(0)$
$\frac{y}{y^{2}} d x-\frac{1}{y^{2}} \cdot x d y=0 \quad$ Distribute into the terms
$\frac{1}{y} d x-\frac{x}{y^{2}} d y=0 \quad$ Simplify
8) Now the equation is ready to be solved as is usual for exact equations.

