www.tomsmath.com
Find the parametric equations of the tangent line to the curve of intersection of the two surfaces shown below at the point $(2,0,3)$
$S_{1}: x^{2}+y^{2}=4$ This a cylinder centered on the z axis
$\mathrm{S}_{2}: \mathrm{x}+\mathrm{z}=5 \quad$ This is a plane

1) Rewrite $x^{2}+y^{2}=4$ as function of three variables: $f(x, y, z)=x^{2}+y^{2}-4=0$
2) Rewrite $x+z=5$ as a function of three variables: $g(x, y, z)=x+z-5=0$
3) Form the gradient of f by taking partials and putting them inside a vector. Evaluate.
$\nabla \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=<2 \mathrm{x}, 2 \mathrm{y}, 0>$
$\nabla \mathrm{f}(2,0,3)=<2(2), 2(0), 0>=<4,0,0>$
4) Form the gradient of g by finding its partials and putting them inside a vector. Evaluate.
$\nabla \mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z})=<1,0,1>$
$\nabla \mathrm{g}(2,0,3)=<1,0,1>$
5) Form the cross product of the gradient vectors. This cross product gives the directions we need to form the parametric equations of the tangent line.

$$
\begin{aligned}
& \nabla \mathrm{f}(2,0,3) \mathrm{x} \nabla \mathrm{~g}(2,0,3)=<4,0,0>\mathrm{x}<1,0,1>=\left(\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
4 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)=(0 \cdot 1-0 \cdot 0) \mathrm{i}-(4 \cdot 1-1 \cdot 0) \mathrm{j}+(4 \cdot 0-1 \cdot 0) \mathrm{k} \\
&=0 \mathrm{i}-4 \mathrm{j}+0 \mathrm{k}=-4 \mathrm{j}
\end{aligned}
$$

6) Parametric equations have the following standard form:
$\mathrm{x}(\mathrm{t})=\mathrm{x}_{0}+$ at $\quad \mathrm{y}(\mathrm{t})=\mathrm{y}_{0}+$ bt $\quad \mathrm{z}(\mathrm{t})=\mathrm{z}_{0}+\mathrm{ct}$
We have to identify a, b and c . These numbers are the components of the cross product shown above.

$$
\begin{array}{lll}
\mathrm{a}=0 & \mathrm{~b}=-4 & \mathrm{c}=0 \\
\mathrm{x}_{0}=2 & \mathrm{y}_{0}=0 & \mathrm{z}_{0}=3 \\
\mathrm{x}(\mathrm{t})=2+0 \mathrm{t} & \mathrm{y}(\mathrm{t})=0-4 \mathrm{t} & \mathrm{z}(\mathrm{t})=3+0 \mathrm{t} \\
\mathrm{x}(\mathrm{t})=2 & \mathrm{y}(\mathrm{t})=-4 \mathrm{t} & \mathrm{z}(\mathrm{t})=3
\end{array}
$$

