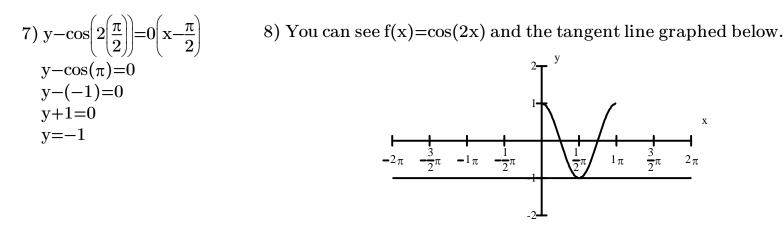
www.tomsmath.com

Find the tangent line to f(x) = cos(2x) at $x = \frac{\pi}{2}$

- 1) Because $\cos(2x)$ consists of the function 2x inside the cosine function, you have to use the chain rule. The chain rule applies when you plug one function into another.
- 2) The chain rule states that $\frac{d}{dx}f(g(x))=f'(g(x))g'(x)$
- 3) In our case, this means multiply the derivative of cosine by the derivative of 2x
- 4) Now we can differentiate as follows:


$$f'(x) = \frac{d}{dx}\cos(2x) = -\sin(2x)(2) = -1 \cdot 2 \cdot \sin(2x) = -2\sin(2x)$$

5) Now we evaluate the derivative at $x=\frac{\pi}{2}$ to find the slope.

$f'\left(\frac{\pi}{2}\right) = -2\sin\left(2\left(\frac{\pi}{2}\right)\right)$	replace x with $\frac{\pi}{2}$
$=-2\sin(\pi)$	cancel the $2's$
=-2(0)=0	$\sin(\pi)=0$

6) Now we use the equation $y-f(x_0)=f'(x_0)(x-x_0)$

In our case, $x_0 = \frac{\pi}{2}$, so replace and simplify.

