Find the tangent line to $f(x)=\cos (2 x)$ at $x=\frac{\pi}{2}$

1) Because $\cos (2 x)$ consists of the function $2 x$ inside the cosine function, you have to use the chain rule. The chain rule applies when you plug one function into another.
2) The chain rule states that $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
3) In our case, this means multiply the derivative of cosine by the derivative of $2 x$
4) Now we can differentiate as follows:

$$
f^{\prime}(x)=\frac{d}{d x} \cos (2 x)=-\sin (2 x)(2)=-1 \cdot 2 \cdot \sin (2 x)=-2 \sin (2 x)
$$

5) Now we evaluate the derivative at $x=\frac{\pi}{2}$ to find the slope.

$$
f^{\prime}\left(\frac{\pi}{2}\right)=-2 \sin \left(2\left(\frac{\pi}{2}\right)\right)
$$

$$
\text { replace } \mathrm{x} \text { with } \frac{\pi}{2}
$$

$$
=-2 \sin (\pi) \quad \text { cancel the } 2 \text { 's }
$$

$$
=-2(0)=0 \quad \sin (\pi)=0
$$

6) Now we use the equation $\mathrm{y}-\mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right)$

In our case, $x_{0}=\frac{\pi}{2}$, so replace and simplify.
7) $y-\cos \left(2\left(\frac{\pi}{2}\right)\right)=0\left(x-\frac{\pi}{2}\right)$
8) You can see $f(x)=\cos (2 x)$ and the tangent line graphed below.
$\mathrm{y}-\cos (\pi)=0$
$y-(-1)=0$
$\mathrm{y}+1=0$
$y=-1$

